The STEM Crisis Is a Myth

Robert N. Charette, IEEE Spectrum, August 30, 2013

You must have seen the warning a thousand times: Too few young people study scientific or technical subjects, businesses can’t find enough workers in those fields, and the country’s competitive edge is threatened.

It pretty much doesn’t matter what country you’re talking about—the United States is facing this crisis, as is Japan, the United KingdomAustraliaChina,BrazilSouth AfricaSingaporeIndia . . . the list goes on. In many of these countries, the predicted shortfall of STEM (short for science, technology, engineering, and mathematics) workers is supposed to number in the hundreds of thousands or even the millions. A 2012 report by President Obama’s Council of Advisors on Science and Technology, for instance, stated that over the next decade, 1 million additional STEM graduates will be needed. In the U.K., the Royal Academy of Engineering reported last year that the nation will have to graduate 100 000 STEM majors every year until 2020 just to stay even with demand. Germany, meanwhile, is said to have a shortage of about 210 000 workers in what’s known there as the MINT disciplines—mathematics, computer science, natural sciences, and technology.

The situation is so dismal that governments everywhere are now pouring billions of dollars each year into myriad efforts designed to boost the ranks of STEM workers. President Obama has called for government and industry to train 10,000 new U.S. engineers every year as well as 100 000 additional STEM teachers by 2020. And until those new recruits enter the workforce, tech companies like Facebook, IBM, and Microsoft are lobbying to boost the number of H-1B visas—temporary immigration permits for skilled workers—from 65,000 per year to as many as 180,000. The European Union is similarly introducing the new Blue Card visa to bring in skilled workers from outside the EU. The government of India has said it needs to add 800 new universities, in part to avoid a shortfall of 1.6 million university-educated engineers by the end of the decade.

And yet, alongside such dire projections, you’ll also find reports suggesting just the opposite—that there are more STEM workers than suitable jobs. One study found, for example, that wages for U.S. workers in computer and math fields have largely stagnated since 2000. Even as the Great Recession slowly recedes, STEM workers at every stage of the career pipeline, from freshly minted grads to mid- and late-career Ph.D.s, still struggle to find employment as many companies, including Boeing, IBM, and Symantec, continue to lay off thousands of STEM workers.

To parse the simultaneous claims of both a shortage and a surplus of STEM workers, we’ll need to delve into the data behind the debate, how it got going more than a half century ago, and the societal, economic, and nationalistic biases that have perpetuated it. And what that dissection reveals is that there is indeed a STEM crisis—just not the one everyone’s been talking about. The real STEM crisis is one of literacy: the fact that today’s students are not receiving a solid grounding in science, math, and engineering.

In preparing this article, I went through hundreds of reports, articles, and white papers from the past six decades. There were plenty of data, but there was also an extraordinary amount of inconsistency. Who exactly is a STEM worker: somebody with a bachelor’s degree or higher in a STEM discipline? Somebody whose job requires use of a STEM subject? What about someone who manages STEM workers? And which disciplines and industries fall under the STEM umbrella?

Such definitions obviously affect the counts. For example, in the United States, both the National Science Foundation (NSF) and the Department of Commerce track the number of STEM jobs, but using different metrics. According to Commerce, 7.6 million individuals worked in STEM jobs in 2010, or about 5.5 percent of the U.S. workforce. That number includes professional and technical support occupations in the fields of computer science and mathematics, engineering, and life and physical sciences as well as management. The NSF, by contrast, counts 12.4 million science and engineering jobs in the United States, including a number of areas that the Commerce Department excludes, such as health-care workers (4.3 million) and psychologists and social scientists (518 000).


Another surprise was the apparent mismatch between earning a STEM degree and having a STEM job. Of the 7.6 million STEM workers counted by the Commerce Department, only 3.3 million possess STEM degrees. Viewed another way, about 15 million U.S. residents hold at least a bachelor’s degree in a STEM discipline, but three-fourths of them—11.4 million—work outside of STEM.

The departure of STEM graduates to other fields starts early. In 2008, the NSF surveyed STEM graduates who’d earned bachelor’s and master’s degrees in 2006 and 2007. It found that 2 out of 10 were already working in non-STEM fields. And 10 years after receiving a STEM degree, 58 percent of STEM graduates had left the field, according to a 2011 study from Georgetown University.

The takeaway? At least in the United States, you don’t need a STEM degree to get a STEM job, and if you do get a degree, you won’t necessarily work in that field after you graduate. If there is in fact a STEM worker shortage, wouldn’t you expect more people with STEM degrees to be filling those jobs? And if many STEM jobs can be filled by people who don’t have STEM degrees, then why the big push to get more students to pursue STEM?

Now consider the projections that suggest a STEM worker shortfall. One of the most cited in recent U.S. debates comes from the 2011 Georgetown University report mentioned above, by Anthony P. Carnevale, Nicole Smith, and Michelle Melton of the Center on Education and the Workforce. It estimated there will be slightly more than 2.4 million STEM job openings in the United States between 2008 and 2018, with 1.1 million newly created jobs and the rest to replace workers who retire or move to non-STEM fields; they conclude that there will be roughly 277,000 STEM vacancies per year.

But the Georgetown study did not fully account for the Great Recession. It projected a downturn in 2009 but then a steady increase in jobs beginning in 2010 and a return to normal by the year 2018. In fact, though, more than 370,000 science and engineering jobs in the United States were lost in 2011, according to the Bureau of Labor Statistics.

I don’t mean to single out this study for criticism; it just illustrates the difficulty of accurately predicting STEM demand and supply even a year or two out, let alone over a prolonged period. Highly competitive science- and technology-driven industries are volatile, where radical restructurings and boom-and-bust cycles have been the norm for decades. Many STEM jobs today are also targets for outsourcing or replacement by automation.

The nature of STEM work has also changed dramatically in the past several decades. In engineering, for instance, your job is no longer linked to a company but to a funded project. Long-term employment with a single company has been replaced by a series of de facto temporary positions that can quickly end when a project ends or the market shifts. {snip}

Any of these factors can affect both short-term and longer-term demand for STEM workers, as well as for the particular skills those workers will need. {snip}

So is there a shortfall of STEM workers or isn’t there?

The Georgetown study estimates that nearly two-thirds of the STEM job openings in the United States, or about 180,000 jobs per year, will require bachelor’s degrees. Now, if you apply the Commerce Department’s definition of STEM to the NSF’s annual count of science and engineering bachelor’s degrees, that means about 252,000 STEM graduates emerged in 2009. So even if all the STEM openings were entry-level positions and even if only new STEM bachelor’s holders could compete for them, that still leaves 70,000 graduates unable to get a job in their chosen field.

Of course, the pool of U.S. STEM workers is much bigger than that: It includes new STEM master’s and Ph.D. graduates (in 2009, around 80,000 and 25,000, respectively), STEM associate degree graduates (about 40,000), H-1B visa holders (more than 50,000), other immigrants and visa holders with STEM degrees, technical certificate holders, and non-STEM degree recipients looking to find STEM-related work. And then there’s the vast number of STEM degree holders who graduated in previous years or decades.


What’s perhaps most perplexing about the claim of a STEM worker shortage is that many studies have directly contradicted it, including reports from Duke University, the Rochester Institute of Technology, the Alfred P. Sloan Foundation, and the Rand Corp. A 2004 Rand study, for example, stated that there was no evidence “that such shortages have existed at least since 1990, nor that they are on the horizon.”

That report argued that the best indicator of a shortfall would be a widespread rise in salaries throughout the STEM community. But the price of labor has not risen, as you would expect it to do if STEM workers were scarce. In computing and IT, wages have generally been stagnant for the past decade, according to the EPI and other analyses. And over the past 30 years, according to the Georgetown report, engineers’ and engineering technicians’ wages have grown the least of all STEM wages and also more slowly than those in non-STEM fields; while STEM workers as a group have seen wages rise 33 percent and non-STEM workers’ wages rose by 23 percent, engineering salaries grew by just 18 percent. The situation is even more grim for those who get a Ph.D. in science, math, or engineering. The Georgetown study states it succinctly: “At the highest levels of educational attainment, STEM wages are not competitive.”

Given all of the above, it is difficult to make a case that there has been, is, or will soon be a STEM labor shortage. “If there was really a STEM labor market crisis, you’d be seeing very different behaviors from companies,” notes Ron Hira, an associate professor of public policy at the Rochester Institute of Technology, in New York state. “You wouldn’t see companies cutting their retirement contributions, or hiring new workers and giving them worse benefits packages. Instead you would see signing bonuses, you’d see wage increases. You would see these companies really training their incumbent workers.”

“None of those things are observable,” Hira says. “In fact, they’re operating in the opposite way.”


Clearly, powerful forces must be at work to perpetuate the cycle. One is obvious: the bottom line. Companies would rather not pay STEM professionals high salaries with lavish benefits, offer them training on the job, or guarantee them decades of stable employment. So having an oversupply of workers, whether domestically educated or imported, is to their benefit. It gives employers a larger pool from which they can pick the “best and the brightest,” and it helps keep wages in check. No less an authority than Alan Greenspan, former chairman of the Federal Reserve, said as much when in 2007 he advocated boosting the number of skilled immigrants entering the United States so as to “suppress” the wages of their U.S. counterparts, which he considered too high.

Governments also push the STEM myth because an abundance of scientists and engineers is widely viewed as an important engine for innovation and also for national defense. And the perception of a STEM crisis benefits higher education, says Ron Hira, because as “taxpayers subsidize more STEM education, that works in the interest of the universities” by allowing them to expand their enrollments.

An oversupply of STEM workers may also have a beneficial effect on the economy, says Georgetown’s Nicole Smith, one of the coauthors of the 2011 STEM study. If STEM graduates can’t find traditional STEM jobs, she says, “they will end up in other sectors of the economy and be productive.”

The problem with proclaiming a STEM shortage when one doesn’t exist is that such claims can actually create a shortage down the road, Teitelbaum says. When previous STEM cycles hit their “bust” phase, up-and-coming students took note and steered clear of those fields, as happened in computer science after the dot-com bubble burst in 2001.


A broader view, I and many others would argue, is that everyone needs a solid grounding in science, engineering, and math. In that sense, there is indeed a shortage—a STEM knowledge shortage. To fill that shortage, you don’t necessarily need a college or university degree in a STEM discipline, but you do need to learn those subjects, and learn them well, from childhood until you head off to college or get a job. Improving everyone’s STEM skills would clearly be good for the workforce and for people’s employment prospects, for public policy debates, and for everyday tasks like balancing checkbooks and calculating risks. And, of course, when science, math, and engineering are taught well, they engage students’ intellectual curiosity about the world and how it works.

Many children born today are likely to live to be 100 and to have not just one distinct career but two or three by the time they retire at 80. Rather than spending our scarce resources on ending a mythical STEM shortage, we should figure out how to make all children literate in the sciences, technology, and the arts to give them the best foundation to pursue a career and then transition to new ones. And instead of continuing our current global obsession with STEM shortages, industry and government should focus on creating more STEM jobs that are enduring and satisfying as well.

Topics: , ,

Share This

We welcome comments that add information or perspective, and we encourage polite debate. If you log in with a social media account, your comment should appear immediately. If you prefer to remain anonymous, you may comment as a guest, using a name and an e-mail address of convenience. Your comment will be moderated.